Compactly Supported Frames for Spaces of Distributions Associated with Non-negative Self-adjoint Operators
نویسندگان
چکیده
A small perturbation method is developed and deployed to the construction of frames with compactly supported elements of small shrinking supports for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows, in particular, to develop compactly supported frames for Besov and Triebel-Lizorkin spaces on the sphere, the interval with Jacobi weights as well as on Lie groups, Riemannian manifolds, and various other settings. The compactly supported frames are utilized for the development of atomic Hardy spaces H A in the general setting of this article.
منابع مشابه
Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملCompactly Supported Reenable Distributions in Triebel-lizorkin Spaces and Besov Spaces
The aim of this paper is to characterize compactly supported re-nable distributions in Triebel-Lizorkin spaces and Besov spaces by projection operators on certain wavelet space and by some operators on a nitely dimensional space.
متن کاملHardy Spaces Associated with Non-negative Self-adjoint Operators
Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملHardy Spaces Associated with Non - Negative Self - Adjoint Operators IMI
Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015